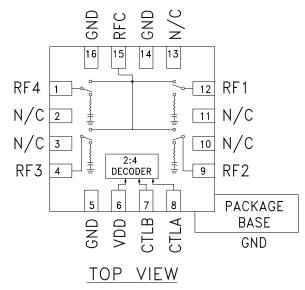


ROHS

v01.0818

GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz


HMC345ALP3E

Typical Applications

This switch is suitable for usage in DC - 8.0 GHz 50-Ohm or 75-Ohm systems:

- Broadband
- Fiber Optics
- Switched Filter Banks
- Wireless below 8 GHz

Functional Diagram

Features

Broadband Performance: DC - 8 GHz High Isolation: 35 dB@ 6 GHz Low Insertion Loss: 2.0 dB@ 6 GHz Integrated Positive Supply 2:4 TTL Decoder 16 Lead 3x3mm QFN Package: 9 mm²

General Description

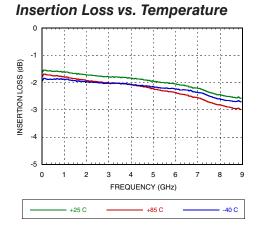
The HMC345ALP3E is a broadband non-reflective GaAs MESFET SP4T switch in a low cost leadless surface mount packages. Covering DC to 8 GHz, this switch offers high isolation and low insertion loss. This switch also includes an on board binary decoder circuit which reduces the required logic control lines to two. The switch operates using a positive control voltage of 0/+5V, and requires a fixed bias of +5V.

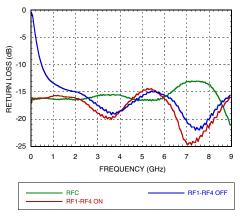
* Blocking capacitors are required at ports RFC and RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.

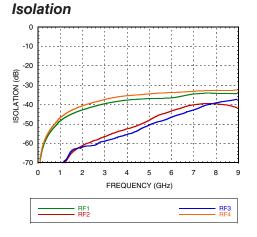
Electrical Specifications, $T_{a} = +25^{\circ}$ C, With 0/+5V Control, 50 Ohm System

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 2.0 GHz DC - 6.0 GHz DC - 8.0 GHz		1.7 2.0 2.4	2.4 2.6 2.9	dB dB dB
Isolation		DC - 2.0 GHz DC - 4.0 GHz DC - 6.0 GHz DC - 8.0 GHz	37 32 31 27	42 37 35 33		dB dB dB dB
Return Loss	"On State"	DC - 2.0 GHz DC - 4.0 GHz DC - 6.0 GHz DC - 8.0 GHz		16 16 16 13		dB dB dB dB
Return Loss (RF1 - RF4)	"Off State"	2.0 - 8.0 GHz		14		dB
Input Power for 1 dB Compression		2.0 - 8.0 GHz	23	28		dBm
Input Third Order Intercept (Two-Tone Input Power = +10 dBm Each Tone, 1MHz Tone Separation)		2.0 - 8.0 GHz	37	43		dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 8.0 GHz		40 100		ns ns

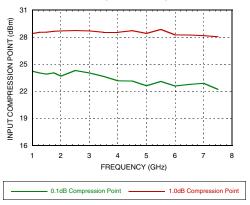
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

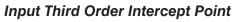

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

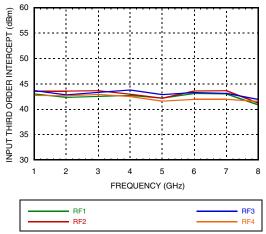

v01.0818



GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz




Return Loss



0.1 and 1 dB Input Compression Point

SWITCHES - MULTI-THROW - SMT

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v01.0818

GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	+7.0 Vdc
Control Voltage Range (A & B)	-0.5V to Vdd +1.0 Vdc
Channel Temperature	150 °C
Thermal Resistance (Insertion Loss Path)	154 °C/W
Thermal Resistance (Terminated Path)	228 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Maximum Input Power	+24 dBm
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Bias Voltage & Current

Vdd Range = +5 Vdc ± 10%		
Vdd (Vdc)	Idd (Typ.) (mA)	ldd (Max.) (mA)
+5	2.5	6.0

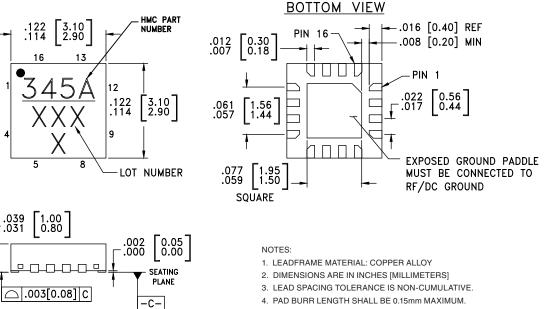
Control Voltages

State	Bias Condition	
Low	0 to +0.8 Vdc @ 1 μA Typical	
High	+2.0 to +5 Vdc @ 50 μA Typical	

Truth Table

Control Input		Signal Path State
А	В	RFCOM to:
Low	Low	RF1
High	Low	RF2
Low	High	RF3
High	High	RF4

Note: DC blocking capacitors are required at ports RFC and RF1, 2, 3, & 4. Their value will determine the lowest transmission frequency.



v01.0818

GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz

Outline Drawing

- 4. PAD BURR LEIGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST B SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC345ALP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[1]	<u>345A</u> XXXX

[1] Max peak reflow temperature of 260 $^\circ\text{C}$

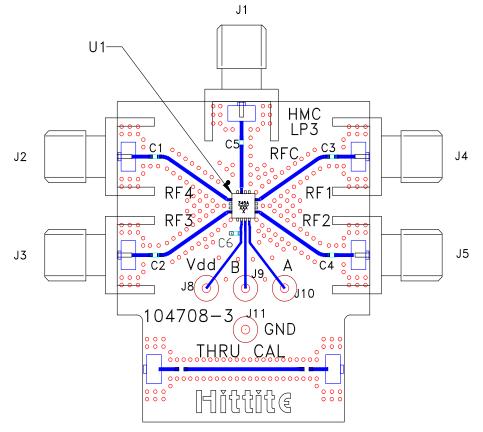
[2] 4-Digit lot number XXXX

GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 9, 12, 15	RF4, RF3, RF2, RF1, RFC	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
2, 3, 10, 11, 13	N/C	This pin should be connected to PCB RF ground to maximize isolation.	
5, 14, 16	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	
6	VDD	Supply Voltage +5V ± 10%	Vdd05рF 2к
7	CTLB	See truth table and control voltage table.	
8	CTLA	See truth table and control voltage table.	

v01.0818



v01.0818

GaAs MMIC SP4T NON-REFLECTIVE POSITIVE CONTROL SWITCH, DC* - 8 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC345ALP3^[1]

Item	Description	
J1 - J5	PCB Mount SMA RF Connector	
J8 - J11	DC Pin	
C1 - C5	100 pF Capacitor, 0402 Pkg.	
C6	1k pF Capacitor, 0402 Pkg.	
U1	HMC345ALP3E SP4T Switch	
PCB [2] 104708 Evaluation PCB 1.29"x1.55"		

Reference this number when ordering complete evaluation PCB
 Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices, upon request.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC345ALP3E HMC345ALP3ETR EV1HMC345ALP3